Storage Function for Passivity Analysis of Pneumatic Actuators with Finite Heat Transfer in Human-interactive Systems

نویسندگان

  • Venkat Durbha
  • Perry Li
چکیده

The power density and variable compliance in pneumatic actuators makes them an attractive option for actuation in human assistive devices. Interaction safety in these devices can be robustly achieved through energetically passive controllers. Efficacy of these controllers depends on appropriate definition of actuator energy function. In previous works, the energy function was defined by assuming the thermodynamic process in the actuator to be either isothermal or adiabatic. In the current paper an estimate of work potential suitable for passivity analysis of a single chambered pneumatic actuator with finite heat transfer is reported. The energy function is developed by maximizing the work done on the actuator to reach an equilibrium position. Optimal conditions show that the maximal solution is attained if the thermodynamic process is a combination of adiabatic and isothermal processes. Through this storage function it is shown that the heat transfer has dissipative affect on the power flow in the pneumatic actuator, irrespective of the chamber air temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)

This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the b...

متن کامل

Numerical Investigation of Roofing Materials Effect on Solar Heat Gain in Different External Conditions

In this study, the thermal performance of three kinds of roofs with different heat capacity and thermal conductivity under different external conditions has been investigated using a numerical method. For this purpose, the combined solar radiation, conduction and convection heat transfer were calculated implicitly in terms of a one-dimensional finite difference method. Different high and low so...

متن کامل

Numerical Analysis of Transient Heat Transfer in Radial Porous Moving Fin with Temperature Dependent Thermal Properties

In this article, a time dependent partial differential equation is used to model the nonlinear boundary value problem describing heat transfer through a radial porous moving fin with rectangular profile. The study is performed by applying a numerical solver in MATLAB (pdepe), which is a centered finite difference scheme. The thermal conductivity and fin surface emissivity are linearly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012